ar X iv : 0 70 5 . 22 29 v 1 [ cs . C C ] 1 5 M ay 2 00 7 On tractability and congruence distributivity ∗

نویسندگان

  • Emil Kiss
  • Matthew Valeriote
چکیده

Constraint languages that arise from finite algebras have recently been the object of study, especially in connection with the Dichotomy Conjecture of Feder and Vardi. An important class of algebras are those that generate congruence distributive varieties and included among this class are lattices, and more generally, those algebras that have near-unanimity term operations. An algebra will generate a congruence distributive variety if and only if it has a sequence of ternary term operations, called Jónsson terms, that satisfy certain equations. We prove that constraint languages consisting of relations that are invariant under a short sequence of Jónsson terms are tractable by showing that such languages have bounded relational width.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 5 . 12 53 v 1 [ m at h . A C ] 9 M ay 2 00 7 DUALITIES AND INTERSECTION MULTIPLICITIES

Let R be a commutative, noetherian, local ring. Topological Q– vector spaces modelled on full subcategories of the derived category of R are constructed in order to study intersection multiplicities.

متن کامل

ar X iv : 0 70 5 . 14 58 v 1 [ cs . P L ] 1 0 M ay 2 00 7 Mixing the Objective Caml and C # Programming Models in the . NET Framework

We present a new code generator, called O’Jacaré.net, to inter-operate between C# and Objective Caml through their object models. O’Jacaré.net defines a basic IDL (Interface Definition Language) that describes classes and interfaces in order to communicate between Objective Caml and C#. O’Jacaré.net generates all needed wrapper classes and takes advantage of static type checking in both worlds....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007